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Weighted Betweenness 
Preferential Attachment: A New 
Mechanism Explaining Social 
Network Formation and Evolution
Alexandru Topirceanu1, Mihai Udrescu1 & Radu Marculescu   2

The dynamics of social networks is a complex process, as there are many factors which contribute to 
the formation and evolution of social links. While certain real-world properties are captured by the 
degree-driven preferential attachment model, it still cannot fully explain social network dynamics. 
Indeed, important properties such as dynamic community formation, link weight evolution, or degree 
saturation cannot be completely and simultaneously described by state of the art models. In this 
paper, we explore the distribution of social network parameters and centralities and argue that node 
degree is not the main attractor of new social links. Consequently, as node betweenness proves to 
be paramount to attracting new links – as well as strengthening existing links –, we propose the new 
Weighted Betweenness Preferential Attachment (WBPA) model, which renders quantitatively robust 
results on realistic network metrics. Moreover, we support our WBPA model with a socio-psychological 
interpretation, that offers a deeper understanding of the mechanics behind social network dynamics.

Despite the widespread use of the Gaussian distribution in science and technology, many social, biological, and 
technological networks are better described by a power-law (Zipf) distribution of nodes degree (the node degree 
is the number of links incident to a node). The Barabasi-Albert (BA) model, based on the degree-driven prefer-
ential attachment, generates such scale free networks with a power-law distribution of node degree P(k) = k−λ. 
In fact, degree preferential attachment (DPA) is widely considered to be one of the main factors behind complex 
network evolution (the scale-free topologies generated with the BA model are able to capture other real-world 
social network properties such as a low average path length L)1,2. However, recent research challenges the idea 
that the scale free property is prevalent in complex networks3. Additionally, the degree-driven preferential attach-
ment model has well-known limitations to accurately describe social networks (i.e., complex networks where 
nodes represent individuals or social agents, and links represent social ties or social relationships), owing to the 
following considerations:

•	 People are physically and psychologically limited to a maximum number of real-world friendships; this 
imposes a saturation limit on node degree4,5. Conversely, in the BA model no such limit exists.

•	 People have weighted relationships, i.e., not all ties are equally important: an average person knows roughly 
350 persons, can actively befriend no more than 150 people (Dunbar’s number)4, and has only a few very 
strong social ties (links)6. The BA model does not account for such link weights7.

•	 The structure and dynamics of communities in social networks are not accurately described with DPA7–11.

To address these issues, recent research has combined the DPA model with properties derived directly from 
empirical data. For instance, there exist proposals which add the small-world property to scale-free models 
(e.g., Holme-Kim model12, evolving scale-free networks13) or the power-law distribution to small-worlds (e.g., 
the Watts-Strogatz model with degree distribution14, multistage random growing small-worlds15, evolving 
small-worlds16, random connectivity small-worlds17). Other research proposals extend Milgram’s experiment18, 
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e.g., static-geographic19 and cellular20 models. However, all these models are still not accurate enough when com-
pared against real-world social networks.

To better understand the real-world accuracy problem, we perform a topological analysis on a variety of 
real-world network datasets and show that node betweenness (which expresses the node quality of being “in 
between” communities) is power-law distributed and–at the same time–correlated with link weight distributions. 
Our empirical findings align well with previous research in some particular cases11,21. Such empirical pieces of 
evidence suggest that, for social networks, the node degree is not the main driver of preferential attachment; 
therefore other centralities may be better attractors of social ties. We conclude that node betweenness–as opposed 
to node degree or any other centrality metric–is the key attractor for new social ties.

Consequently, as the main theoretical contribution, we introduce the new Weighted Betweenness Preferential 
Attachment (WBPA) model, which is a simple yet fundamental mechanism to replicate real-world social net-
works topologies more accurately than other state-of-the-art models. More precisely, we show that the WBPA 
model is the first social network model that is able to replicate community structure while it simultaneously: (i) 
explains how link weights evolve, and (ii) reproduces the natural saturation of degree in hub nodes.

Finally, we further interpret WBPA from a socio-psychological perspective, which may explain why node 
betweenness is such an important factor behind social network formation and evolution.

Results
Centrality statistics.  We investigate the distributions of node betweenness on a variety of social network 
datasets: Facebook users (590 nodes), Google Plus users (638 nodes), weighted co-authorships in network sci-
ence (1589 nodes), weighted online social network (1899 nodes), weighted Bitcoin web of trust (5881 nodes), 
unweighted Wikipedia votes (7115 nodes), weighted scientific collaboration network (7343 nodes), unweighted 
Condensed Matter collaborations (23 K nodes), weighted MathOverflow user interactions (25 K nodes), 
unweighted HEP citations (28 K nodes), POK social network (29 K nodes), unweighted email interaction (37 K 
nodes), IMDB actors (48 K nodes), Brightkite OSN users (58 K nodes), Facebook - New Orleans (64 K nodes), 
respectively Epinions (76 K nodes), Slashdot (82 K nodes) and Timik (364 K nodes) on-line platforms. To improve 
the robustness of our analysis, we ensure data diversity by considering network datasets with different sizes, 
weighted and unweighted, and representing various types of social relationships (see Methods).

Our first observation is that, in all datasets, node degree, node betweenness, link betweenness, and link 
weights (for datasets with weighted links) are power-law distributed. Moreover, the power-law slope of degree 
distribution is steeper in comparison with node betweenness distribution. More precisely, as presented in Fig. 1a, 
the average degree slope is γdeg = 2.097 (standard deviation σ = 0.774) and the average betweenness slope is 
γbtw = 1.609 (σ = 0.431), meaning that γdeg is typically 30.3% steeper than γbtw across all datasets (details in SI.1. 
Social network datasets statistics). Also, for all considered datasets there is a significant non-linear (polynomial 
or exponential) correlation between node betweenness and node degree (see Fig. 1b); this further suggests that 
node betweenness may be the source of imbalance in node degree distribution. The statistics for the entire dataset 
collection are presented in SI.1.

The second observation is that–unlike node degree–node betweenness is significantly more correlated with 
the weights of the incident links. After assessing the correlation between both node betweenness and node degree 
with the weighted sum of all adjacent links, we argue that betweenness acts as an attractor for stronger ties. For 
example, for the co-authorships weighted network with 1589 nodes23, the top 5% links accumulate 27.4% of the 
total weight in the graph; these top 5% links are incident to nodes which amass 80.2% of the total node between-
ness, but only 14.9% of the total node degree (see Fig. 2–further numerical details in SI.1, Table 2). In all analyzed 
weighted datasets, node betweenness correlates with incident link weights by ratios that are 2.5–9 times higher 
than node degree–link weights associations (additional details in SI.1, Fig. 2).

The first observation indicates a significant correlation between node degree and node betweenness but it 
does not necessarily imply causation. However, the second observation is that betweenness attracts stronger links 
which, in turn, triggers more imbalance in degree distribution; this suggests that node betweenness is behind 

Figure 1.  (a) Overview of centrality distribution slopes for all empirical datasets; the average slopes are 
highlighted for node degree (blue) and node betweenness (red). (b) Non-linear correlation of node betweenness 
and node degree in a representative weighted on-line social network (OSN)22 with 1899 nodes. These results 
show that, in social networks, degree and betweenness have a power-law distribution (with a steeper slope for 
degree), and that there is a non-linear correlation between the two centralities.
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networks evolution, while the power-law degree distribution is only a by-product. The importance of node 
betweenness is further supported by the analysis of centrality dynamics. To this end, we provide the example of 
an on-line social network, UPT.social, which was intended to facilitate social interaction between students and 
members of faculty at University Politehnica of Timişoara, Romania24. Right after its launch in 2016, UPT.social 
attracted hundreds of users, and the entire dynamical process of new links formation was recorded as snapshots 
of the first 6 weeks (T0 − T5). As exemplified in Fig. 3 (and further detailed in SI.3, Fig. 6), the nodes with high 
betweenness become the principal attractors of new social ties; we also note that the top 3 nodes attracting new 
edges at time snapshot T2 are the ones which maximize their betweenness beforehand, and then trigger a sub-
sequent degree increase. As shown, once node degree begins to saturate (T3 − T5), node betweenness drops, as 
nodes fulfill their initial bridging potential.

Betweenness preferential attachment (BPA).  In what follows, we propose the betweenness preferential 
attachment model (BPA) and conjecture that–for social networks–it is more realistic than the degree preferential 
attachment (DPA) model. The fundamental difference between the degree-driven and betweenness-driven pref-
erential attachment is illustrated in Fig. 4; the upper panel shows that, under the DPA rule, the nodes with high 
degree (colored in orange) gain an even higher degree. In contrast, the lower panel in Fig. 4 shows that, under the 
BPA rule, the nodes with high betweenness (orange) attract more links and increase their degrees; in turn this 
decreases their betweenness via a redistribution process, thus limiting the number of new links for high-degree 
nodes as a second order effect. This may explain why, in real-world networks, the number of new links is limited 
for high degree nodes (i.e., degree saturation).

WBPA model.  Besides validating the BPA mechanism, we also realize that all the empirical network data gath-
ered in a real-world context is weighted, even if the information about link weights is not always available. For 
example, there is no link weight information in our Facebook and Google Plus datasets, yet these networks are 
clearly part of a weighted social context in which each link has a distinct social strength. Realistic networks evolve 
according to a mechanism which considers link weights, therefore we develop the weighted BPA (WBPA) algo-
rithm to characterize the social network evolution.

Figure 2.  The accumulated fitness (expressed as Degree D and Betweenness B centralities) of nodes incident 
to links with weights within the top 1% to 100% percentiles (a) in the Geom network (7343 nodes, 11898 links), 
and (b) in the Co-authorships network (1589 nodes, 2742 links). The Betweenness/Degree ratios (B/D) range 
between 2.5–9, highlighting that top link weights are predominantly incident to high betweenness nodes, rather 
than high degree nodes.

Figure 3.  Betweenness and degree evolution for the top 3 link-receiver nodes over time snapshots T1 − T5, i.e., 
weeks 2–6 after launching the UPT.social network. The three highlighted nodes (anonymized users – u1, u2, u3) 
are the top 3 link receivers at T2.
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The WBPA algorithm for link weight assignment according to the fitness-weight correlation is given in Fig. 5 
and discussed below. In the case of WBPA, the fitness f is node betweenness. Note that even though link weights 
wij are not used directly during the growth phase, they have a significant second order impact: Betweenness 
depends on the shortest paths in the graph, which in turn are highly dependent on link weights. Link weights 
are updated in step 3 of the WBPA algorithm, and whenever a weight becomes ≤0, the corresponding link is 
removed.

Weighted BPA Algorithm (WBPA). 

	 1)	 Distribute weights: Begin with an arbitrarily connected graph G with nodes V and bidirectional links E 
(i.e., for ∀eij ∃ eji). A weight wij is added for each link eij in the graph, so that wij is proportional to fitness fj of 
the target node vj. For each node vi, all incident link weights wij are normalized so that the outgoing weight-
ed degree is 1.

	 2)	 Growth (BPA): At every step, a new node vk is introduced; the new node tries to connect to n (1 ≤ n ≤ V) 
existing nodes in G. The probability pi that vk becomes connected to an existing node vi is proportional to 
fitness fi. Therefore, we have = ∑ ∈p f f/i i j V j where the sum is made over all nodes in the graph.

	 3)	 Dynamic weight redistribution: Once a new node vk becomes connected to an existing node vi, weights wki 
and wik are initialized with the normalized fitnesses fi and fk respectively. As the weighted outgoing degree 
of node vi increases by wik, every other weight wij is rescaled with −wik/n, where n is the previous number 
of neighbors of node vi.

Figure 4.  The mechanisms of degree preferential attachment (DPA) versus betweenness preferential 
attachment (BPA) depicted in terms of acquiring new links and limiting the (excessive) accumulation of degree 
over time. In DPA, nodes with high degree attract even more links, and thus node degree increases ad infinitum. 
Conversely, in BPA, nodes attracting new links because of their high betweenness will eventually lose their 
betweenness in favor of their neighboring nodes, thus limiting the acquired degree.
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Assessing the realism of WBPA.  WBPA defines complex interactions between link weights and node 
centralities, hence we expect emerging phenomena such as n-order effects. Therefore, a mathematical analysis of 
WBPA would be cumbersome and beyond the scope of our paper. Instead, as validation strategy, we test WBPA 
against several preferential attachment (PA) models to explore which one produces the most realistic social net-
work topology. To this end, we quantify preferential attachment according to a fitness function f which expresses 
the capability of individual nodes to attract new connections (e.g., if f is chosen to be node degree Deg, then we 
reproduce the classic BA model2). We consider f as one of the following network centralities: degree Deg (DPA 
model), betweenness Btw (WBPA model), eigenvector centrality EC (ECPA model), closeness Cls (ClsPA model), 
and clustering coefficient CC (CCPA model). Each node centrality is defined in the Methods section. The com-
parison between synthetic and real-world networks is done through topological similarity assessment supported 
by the statistical fidelity metric25, alongside standard deviation and p-values. Fidelity takes values ϕ ∈ [0, 1] with 
1 representing a network that is identical with the reference network (see the Methods section for more details).

We also make use of the following graph metrics to characterize and compare networks: average degree (AD), 
average path length (APL), average clustering coefficient (ACC), modularity (Mod), graph diameter (Dmt), and 
graph density (Dns). We start by measuring the distributions of these six metrics on the 18 selected real-word 
datasets. To assess which centrality is the most appropriate as fitness function, we start by generating networks 
according to each PA model, of increasing sizes: N = {1K, 2K, 5K, 10K, 50K, 100K} nodes; the full statistical results 
are presented in SI.2. Best fitness for preferential attachment. Aggregating the statistical results from SI.2–Fig. 4  
(real-world data) and Fig. 5 (PA networks), we provide an intuitive visual comparison in Fig. 6 between the 
averaged evolution of the six graph metrics on the real-world data (N = 590 to N = 364 K nodes), and on the 
degree-driven and betweenness-driven PA networks.

To better illustrate the comparisons between the synthetic PA networks and the real-world datasets, we present 
the trend lines for each graph metric in Fig. 6; for the real-world data networks the trend line is green-dotted, for 
Btw fitness networks is blue, and for Deg fitness networks is red. On close inspection, we uncover the following:

•	 AD in real data evolves differently than in PA networks.
•	 APL evolution in real data resembles Btw networks much better than Deg networks. We measure a statisti-

cal fidelity of ϕBtw = 0.925 and ϕDeg = 0.853.
•	 ACC evolution in real data resembles Btw more than Deg, with statistical fidelities of ϕBtw = 0.665 and 

ϕDeg = 0.515.
•	 Mod evolution in real data resembles both networks very well, with statistical fidelities of ϕBtw = 0.814 and 

ϕDeg = 0.812 (a slight advantage for the Btw networks).
•	 Dmt evolution in real data resembles Deg more than Btw. Even though we see the same type of increase, 

Deg produces longer diameters as seen in the majority of real-word data. The measured statistical fidelities 
are ϕBtw = 0.796 and ϕDeg = 0.836.

•	 Dns evolution in real data resembles both networks, with statistical fidelities of ϕBtw = 0.634 and 
ϕDeg = 0.634.

For simplicity, Fig. 6 includes only Deg and Btw PA networks in the comparison with real-world data; the full 
numerical data–with all PA network models–are detailed in Table 1. All these results demonstrate the superior 
realism provided by the WBPA in comparison to the classic DPA principle, as well as in comparison to PA driven 
by other node centralities such as eigenvector, closeness or clustering coefficient.

We strengthen our analysis by presenting several direct comparisons between real networks and synthetic PA 
networks, generated with the same node sizes as the real-world reference networks. The comparisons are made 

Figure 5.  Network evolution according to the Weighted BPA algorithm. (a) All bidirectional links E in graph G 
are initialized with weights wij and wji, respectively. Each outgoing link weight of node v1 is proportional to the 
fitness function (indicated as w f∼ ) of the target neighbor nodes, and then normalized such that the sum of 
outgoing weights is 1. (b) New node v6 connects to existing ones v1–v5 based on probabilities that are 
proportional to the normalized fitness (p f∼ ) of the target nodes. Say, v6 connects only to v1 based on fitness f1. 
(c) Once v6 and v1 connect, node v1 assigns a weight w1−6 on the new link that is proportional to fitness f6. As 
such, a proportional weight ratio of w1−6/4 is subtracted (indicated with a minus sign) from the four already 
existing links. If any of the newly resulting weights drop below 0, the corresponding link is removed from node 
v1. According to the BPA principle, the fitness f is represented by the node betweenness centrality.
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using the fidelity metric ϕ, as well as by comparing individual graph metrics (one by one), to show that WBPA is 
superior to the other PA networks. To this end, we select the Facebook (FB), Google Plus (GP), Online social net-
work (OSN), and IMDB real-world datasets, and provide the full statistical results in Table 2; here, each sub-table 
contains the reference real-world network and its graph metrics on the first row, while the remaining lines contain 
the averaged graph metrics for 10 synthetic networks generated according to preferential attachment driven by 
each centrality (Deg, Btw, EC, Cls, CC). Additionally, we provide measurements for a Null model (Random net-
work) to serve as baseline. The standard deviation for each synthetic dataset metric is symbolized with a ± sign.

Figure 6.  Distribution of the six fundamental graph metrics (a–f) for increasing networks sizes (N = 1 K to 
N = 100 K nodes) for the real world datasets (green), and the synthetic Preferential Attachment (PA) networks 
driven by Btw (blue) and Deg (red). The min-max intervals for each set of measurements are marked with error 
bars.

Metric

WBPA DPA ECPA ClsPA CCPA Null

ϕ p-val ϕ p-val ϕ p-val ϕ p-val ϕ p-val ϕ p-val

AD 0.605 9.4E-10 0.604 8.4E-10 0.603 9-E10 0.605 1E-09 0.603 9E-10 0.603 8E-10

APL 0.925 0.951 0.853 0.882 0.867 0.972 0.630 0.058 0.665 0.991 0.842 0.882

ACC 0.665 0.899 0.515 0.872 0.519 0.899 0.503 0.875 0.505 0.879 0.502 0.872

Mod 0.814 0.998 0.812 0.999 0.812 0.998 0.729 0.982 0.811 0.998 0.798 0.999

Dmt 0.796 0.652 0.836 0.175 0.821 0.505 0.734 0.017 0.717 0.034 0.795 0.175

Dns 0.634 — 0.634 — 0.634 — 0.685 — 0.634 — 0.634 —

Table 1.  P-values and fidelity ϕ of WBPA, other PA networks, and the null model (random network) obtained 
by comparing each individual graph metric with the expected average metrics of the real world datasets. Bold 
values represent the highest fidelity on each row (i.e., for each graph metric), showing that WBPA obtains the 
most realistic values for the majority of parameters.
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The mechanism of preferential attachment which we adopt in our paper is a fundamental, yet generic and 
simple framework. State of the art studies which are specifically aimed at creating realistic topologies propose 
algorithms with a far increased complexity. Therefore, intuitively, it is expected that state of the art models like 
Cellular (Cell)20, Home-Kim (HK)12, Toivonen (TV)26, or Watts-Strogatz with degree distribution (WSDD)14 
etc., will generate more realistic topologies in terms of the six discussed graph metrics. To test this hypothesis, we 
further generate such synthetic networks of size N = 10,000 and compare them with WBPA, DPA networks and 
several real-world datasets. The results are provided in Table 3, showing that not only is WBPA superior to DPA 
and PA models driven by other centralities but, in most cases (i.e., 10 out of 13), it outperforms the other synthetic 
models in terms of topological fidelity as well. For readability purposes we did not add information about the 
standard deviations of each synthetic model here; this information may be found in SI.4, Tables 4 and 5.

To offer the diversity required by a robust test of our model, we also include unweighted networks in our col-
lection. A fair comparison between WBPA networks (which are all weighted) and the large and unweighted 
example networks, requires that all weights on our WBPA algorithm output be discarded. In this comparison, we 
start by generating WBPA networks of 10,000 nodes, then make all weights >w 0ji  become 1, thus obtaining 
unweighted BPA networks.

The upper half of Table 3 contains the average fidelities of WBPA, DPA and the two null model networks, 
towards the real-world reference networks. The lower half of Table 3 contains the other state of the art synthetic 
networks. Our WBPA obtains the highest fidelity towards most empirical references, e.g., 13–68% higher ϕFB, 
21–81% higher ϕOSN, 4–47% higher ϕTK than all other synthetic models. As such, we prove the increased realism 
of our model in comparison with some elaborated state-of-the-art models (briefly described in SI.4, and quanti-
fied in SI.4, Table 4). Compared to DPA, our model produces networks with higher fidelity values; when averaged 
over all empirical networks we obtain: 0 831Btwφ = .  and 0 777Degφ = . .

We note that the WBPA model produces a specific distribution of the Betweenness/Degree (B/D) ratio. To 
this end, we measure B/D distributions on all datasets (weighted and unweighted), as well as on our synthetic 

Datasets AD APL ACC Mod Dmt Dns

ϕ p-valFB 19.82 2.481 0.266 0.468 8 0.005

Null 9.986 ± 0.165 2.448 ± 0.014 0.034 ± 0.001 0.229 ± 0.001 4 ± 0.000 0.054 ± 0.000 0.598 0.1936

DPA 8.755 ± 0.097 4.526 ± 0.220 0.018 ± 0.067 0.615 ± 0.003 9.7 ± 0.006 0.005 ± 0.577 0.731 0.1313

WBPA 8.908 ± 0.154 3.142 ± 0.101 0.259 ± 0.021 0.568 ± 0.020 6 ± 0.000 0.005 ± 0.000 0.878 0.2435

ECPA 8.906 ± 0.178 4.318 ± 0.030 0.016 ± 0.002 0.616 ± 0.002 9.5 ± 0.707 0.005 ± 0.000 0.738 0.1599

ClsPA 8.812 ± 0.103 5.764 ± 0.167 0.006 ± 0.001 0.634 ± 0.019 13.5 ± 2.121 0.005 ± 0.000 0.653 0.0124

CCPA 8.934 ± 0.114 3.924 ± 0.107 0.007 ± 0.002 0.622 ± 0.004 7 ± 1.000 0.005 ± 0.001 0.756 0.2029

Datasets AD APL ACC Mod Dmt Dns

ϕ p-valGP 12.15 3.9 0.404 0.44 12 0.035

Null 12.129 ± 0.109 2.344 ± 0.006 0.038 ± 0.001 0.203 ± 0.002 3 ± 0.000 0.038 ± 0.000 0.676 0.1658

DPA 8.351 ± 0.156 2.664 ± 0.001 0.051 ± 0.003 0.238 ± 0.001 4.5 ± 0.707 0.021 ± 0.000 0.662 0.2460

WBPA 8.370 ± 0.139 2.384 ± 0.007 0.269 ± 0.027 0.275 ± 0.006 5 ± 0.000 0.021 ± 0.000 0.709 0.3100

ECPA 8.614 ± 0.113 2.683 ± 0.018 0.042 ± 0.003 0.232 ± 0.006 4.4 ± 0.548 0.021 ± 0.000 0.659 0.2479

ClsPA 8.242 ± 0.112 2.770 ± 0.150 0.027 ± 0.002 0.232 ± 0.018 5 ± 1.000 0.021 ± 0.000 0.664 0.2944

CCPA 8.262 ± 0.219 2.773 ± 0.090 0.028 ± 0.002 0.247 ± 0.006 6.3 ± 0.577 0.021 ± 0.000 0.676 0.4553

Datasets AD APL ACC Mod Dmt Dns

ϕ p-valOSN 10.68 3.055 0.138 0.249 8 0.008

Null 10.807 ± 0.121 2.777 ± 0.008 0.011 ± 0.001 0.211 ± 0.002 4.3 ± 0.577 0.012 ± 0.000 0.731 0.8718

DPA 11.789 ± 0.126 3.078 ± 0.018 0.019 ± 0.003 0.232 ± 0.008 8.6 ± 0.547 0.006 ± 0.000 0.839 0.9973

WBPA 11.911 ± 0.163 3.035 ± 0.005 0.242 ± 0.023 0.252 ± 0.007 7.4 ± 0.894 0.007 ± 0.001 0.874 0.9982

ECPA 11.793 ± 0.101 3.075 ± 0.210 0.021 ± 0.004 0.253 ± 0.006 7 ± 1.000 0.006 ± 0.000 0.842 0.9968

ClsPA 11.807 ± 0.103 3.319 ± 0.159 0.009 ± 0.002 0.263 ± 0.022 12.7 ± 0.57 0.007 ± 0.001 0.781 0.7022

CCPA 11.681 ± 0.224 3.155 ± 0.007 0.006 ± 0.001 0.221 ± 0.010 6.4 ± 0.547 0.006 ± 0.000 0.802 0.9903

Datasets AD APL ACC Mod Dmt Dns

ϕ p-valIMDB 23.02 3.772 0.197 0.63 13 0.001

Null 3.396 ± 0.134 5.501 ± 0.010 1E-4 ± 0.000 0.49 ± 0.002 14.3 ± 0.577 1E-6 ± 0.000 0.682 0.0031

DPA 3.438 ± 0.101 5.288 ± 0.002 1E-4 ± 0.000 0.642 ± 0.009 15.5 ± 0.600 1E-4 ± 0.000 0.712 0.0030

WBPA 3.526 ± 0.040 4.045 ± 0.035 0.159 ± 0.021 0.555 ± 0.018 10.2 ± 0.690 1E-4 ± 0.000 0.803 0.0043

ECPA 3.461 ± 0.111 5.103 ± 0.019 0.006 ± 0.001 0.634 ± 0.005 12.0 ± 0.700 1E-4 ± 0.000 0.739 0.0039

ClsPA 3.475 ± 0.077 7.611 ± 0.119 1E-4 ± 0.000 0.741 ± 0.016 18.8 ± 0.400 1E-4 ± 0.000 0.613 0.0003

CCPA 3.413 ± 0.134 4.862 ± 0.004 1E-4 ± 0.000 0.621 ± 0.006 8.0 ± 0.333 1E-4 ± 0.000 0.702 0.0018

Table 2.  Topological comparison of the Facebook (FB), Google Plus (GP), Online social network (OSN), and 
actors’ IMDB datasets with the five preferential attachment network models, and a baseline random network 
(null model). Standard deviation is marked with ±. Bold values on each column represent the closest match to 
the reference network. A higher fidelity ϕ means a closer match with the reference network.
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WBPA-generated networks, using the Gini coefficient (a Gini coefficient takes values between 0 and 1, with values 
closer to 0 representing a more uniform dispersion of data) to evaluate data dispersion27. The Gini values obtained 
on the empirical data are given in Table 4: all empirical datasets, whether weighted or unweighted, have their Gini 
coefficients within a similar range, i.e., the average real-world Gini is greal = 0.5193 ± 0.071. Indeed, for WBPA 
networks with 10,000 nodes, we have an average Gini coefficient of gWBPA = 0.4962 ± 0.0282, which is very close 
to the real-world B/D Gini values (−4.5%). Additionally, we generate 10 of each random, small world, and PA 
networks of 10,000 nodes. For these synthetic networks we obtain the corresponding Gini values in Table 4. The 
PA networks (except WBPA) produce an average gPA = 0.7784 ± 0.0128, whereas the random network produces 
an average Gini grand = 0.9374 ± 0.0013. These results point out two key aspects: (i) the B/D dispersion in other PA 
and other state-of-the-art synthetic models differs significantly from real-world social networks, and (ii) WBPA 
produces networks with B/D distributions that are closer to the real-world.

Two specific B/D distributions are exemplified in Fig. 7a,b for the Google Plus and POK users networks, 
respectively. Figure 7c,d present the B/D distribution for the DPA and WBPA networks. The visual similarity 
inspection reveals WBPA as the only synthetic model capable of reproducing the real-world B/D ratios (see SI.1, 
Fig. 3 for additional examples).

The WBPA realism is also backed up by the centrality distribution analysis. The power-law slopes for degree 
and betweenness distributions in WBPA (γdeg = 1.391 and γbtw = 1.171) are very similar to the real-world dis-
tributions from the Centrality statistics section (see Fig. 1) and SI.1, Table 1, meaning that the degree slope is 
steeper than the betweenness slope (with 18.8%). Similar to the real-world cases, we obtain a polynomial fit for 
the node betweenness-degree correlation in WBPA (y = 0.246x2 + 329.8x − 3569.4, with correlation coefficient 
R2 = 0.9977).

Discussion and a Socio-Psychological Interpretation
From a computational standpoint, node betweenness is significantly more complex to compute in comparison 
with node degree. However, when individuals make assessments of social attractiveness in real-world situa-
tions–which is essential for driving preferential attachment and establishing new social links–they do not rely 
on executing algorithms or other types of quantitative evaluations. Instead, individuals make decisions based 

Datasets g σ Δreal Δreal%

Facebook 0.5955 — — —

Google-Plus 0.4820 — — —

Co-authorships 0.4392 — — —

Online SN 0.5921 — — —

POK 0.4879 — — —

Random 0.9374 0.0013 0.418 +80.5%

Small-world 0.8771 0.0451 0.358 +68.9%

DPA 0.7784 0.0182 0.263 +50.7%

ECPA 0.7767 0.0038 0.257 +59.6%

ClsPA 0.7617 0.0017 0.242 +46.7%

CCPA 0.7924 0.0203 0.273 +52.6%

WBPA 0.4962 0.0282 0.023 −4.5%

Table 4.  Gini coefficients g for the distributions of betweenness/degree (B/D) ratios in real-world networks 
(ranging between 590–82 K nodes and 2742–948 K links), null-model synthetic networks (random, small-
world), and PA networks (10 K nodes). For synthetic networks we specify the standard deviation σ (after 
generating 10 networks of each), and the difference towards the empirical average Gini coefficient greal = 0.5193 
(absolute value Δreal and relative percentage Δreal%).

Datasets ϕFB ϕGP ϕCoAu ϕOSN ϕBTC ϕMOvr ϕHEP ϕPOK ϕEmE ϕIMDB ϕBK ϕFBNO ϕTK

WBPA 0.835 0.842 0.735 0.801 0.897 0.814 0.845 0.771 0.837 0.892 0.779 0.888 0.871

DPA 0.694 0.796 0.778 0.634 0.754 0.692 0.836 0.758 0.851 0.838 0.782 0.849 0.839

Rand 0.681 0.719 0.681 0.597 0.816 0.761 0.779 0.754 0.733 0.774 0.678 0.788 0.753

SW 0.737 0.718 0.705 0.554 0.644 0.579 0.603 0.669 0.769 0.643 0.824 0.612 0.657

Cell 0.543 0.707 0.637 0.52 0.566 0.559 0.503 0.508 0.792 0.55 0.622 0.501 0.591

HK 0.704 0.778 0.578 0.66 0.687 0.679 0.522 0.577 0.787 0.579 0.648 0.539 0.675

Tvn 0.638 0.676 0.711 0.55 0.571 0.561 0.558 0.601 0.831 0.569 0.676 0.56 0.612

WSDD 0.497 0.708 0.673 0.443 0.547 0.535 0.511 0.556 0.825 0.516 0.627 0.513 0.591

Table 3.  Statistical fidelity ϕ of WPBA, DPA, two Null models (random and small-world), and four state of the 
art network (Cellular, Holme-Kim, Toivonen, Watts-Strogatz with degree distribution) models, obtained by 
comparing the topologies with multiple real-world datasets. Values in bold represent the highest fidelity on each 
column (i.e., most realistic topology).
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on qualitative perceptions30. In light of the quality over quantity hypothesis proposed by social psychology31, we 
argue that node betweenness is a far better indicator of social attractiveness than node degree, because the quality 
of being “in between” can be easily and quickly perceived, due to the fact that humans are better at observing 
qualitative aspects (e.g., differences and diversity) than quantitative ones32. This idea is supported by an experi-
mental study on how people favor investing in fewer qualitative social ties, rather than numerous lower quality 
ties32. Our results indicate that WBPA provides a more accurate social network topological model, being able 
to reproduce real-world community structure as well as to explain degree saturation and link weight evolution.

We believe that the WBPA model transcends the mere topological perspective on social relationships evolu-
tion. As such, in the field of social psychology, individuals are perceived as social creatures who strive for social 
recognition, validation, approval and fame7,19,33,34. Indeed, individuals tend to connect to two types of other 
nodes: individuals who are popular in their communities (i.e., typically they have high degree), and individuals 
who connect multiple communities (having high betweenness). While the former type of interconnection is 
mostly related to the popularity of individuals within local communities, it appears to be an epiphenomenon of 
the latter.

Also, state of the art has previously identified that social networks have apparent (degree) assortative mixing, 
while, technological and biological networks appear to be disassortative in nature34,35. The study in35 explains 
this as most networks have a tendency to evolve, unless otherwise constrained, towards their maximum entropy 
state–which is usually disassortative. A similar debate was introduced by Borondo et al. based on the concepts of 
meritocracy versus topocracy36. The authors discuss the critical point at which social value changes from being 
based on personal merit, to being based on social position, status, and acquaintances. In the context of social net-
works, we interpret this issue as follows: in our ego-networks the balance between friends with less influence and 
ones with more influence than us translates into betweenness assortativity. Indeed, connecting to persons with 
high betweenness and increasing our tie strength with them (through, say, a stable social relationship), we our-
selves become, in turn, more influential social bridges. This propagation of influence determines other persons, 
with lower betweenness, to interact with us and direct more tie strength towards us.

Towards this end, we introduce the concept of social evolution cycle, which revolves around betweenness assor-
tativity rather than degree assortativity34,35,37. According to our approach, individuals become more influential 
over time by increasing their own betweenness. Therefore, the exhibition of one individual’s desire to increase his/
her betweenness is two-fold: it attracts new ties (i.e., increase in degree), and it creates stronger ties (i.e., increase 
in link weight); this process continues for the next generation of individuals who aspire to climb the social ladder. 
As shown, this conclusion is supported by the evolution of networks generated with WBPA.

We envision two ways of improving an individual’s social status. The first choice relies on forcing tie strengths 
inside the existing neighborhood to increase first, followed by an increase in influence. The second choice relies 
on increasing influence first by broadening the neighborhood to influential agents (BPA principle), which will in 
turn trigger an increase in tie strengths. We consider the second choice as the more plausible social process, as 
detailed and explained in Fig. 8.

We conclude that the WBPA model is quantitatively more robust than DPA, as it can reproduce more accu-
rately a wide range of real-world social networks. Such a conclusion means that node degree is not the main 
driver in social network dynamics. Instead, node betweenness is a much better indicator of social attractiveness, 
because it drives the formation of new social bonds, as well as the evolution of social status of individuals. From a 

Figure 7.  Distributions of betweenness/degree (B/D) ratios in empirical and synthetic social networks 
characterized by Gini coefficients g. (a) Google Plus users network28 (gGP = 0.4820). (b) POK users network29 
(gPK = 0.4879). (c) DPA network2 (gDPA = 0.7828 ± 0.0182) (d) WBPA network (gWBPA = 0.4962 ± 0.0282). The 
B/D distribution in our WBPA network model, as opposed to the DPA network, is very similar to that found in 
real-world networks.
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socio-psychological standpoint, individuals (intuitively) perceive node’s betweenness as the capacity of bridging 
communities, irrespective of its degree. As shown, WBPA is a subtle mechanism at work that is able to replicate 
the social network community structure. Also, WBPA explains the dynamic accumulation of degree and link 
weights, as well as the eventual degree saturation, as a second order effect. Consequently, we believe our work 
paves the way for a new and deeper understanding of the mechanisms that lie behind the dynamics of complex 
social networks.

Methods
Real-world datasets.  All data used in this study were selected to facilitate a thorough analysis of node 
betweenness and degree, as well as measuring the realism of synthetic networks. The real-world datasets have 
been chosen based on diversity of both context and network size. Prior studies confirm that data mining from 
sources such as Facebook or Google Plus is reliable for realistic social network research38,39, and indicate a strong 
correlation between the real-world and virtual friendships of people40,41.

Table 5 provides the graph metric measurements used for the realism assessment of our WBPA model, as 
presented in the Results section. Our real-world datasets comprise the following social networks (ordered by 
network size, from N = 590 to N = 364K nodes): Facebook (FB) users41, Google Plus (GP) users28, weighted 
co-authorships (CoAu) in network science23, weighted on-line social network (OSN)22, trade network using 
Bitcoin OTC platform (BTC)42, votes for Wikipedia administrators (WkV)43, weighted scientific collaboration 
network in Computational Geometry (Geom)44, Condensed Matter collaboration network from arXiv (CM)45, 
weighted interactions on the stack exchange web site MathOverflow (MOvr)46, High-Energy Physics citation net-
work (HEP)47, POK online social network29, Enron email (EmE) communication network48, IMDB adult actors 
co-appearances, Brightkite online social network (BK)49, Facebook-New Orleans (FBNO)50, Epinions online 
social network (EP)51, Slashdot online social network (SL)48, and Timik online platform (TK)52.

Information about the nature of nodes and links, as well as direct URLs for each dataset are provided in SI.5 
Datasets availability, Table 6. In the main manuscript, Table 6 presents the natural ranges for the graph metrics 
that are provided in Table 5, as they are measured across the entire range of considered real-world on-line social 
networks41.

Network centralities.  All graphs are generated and visualized using Gephi53; the graph centralities are ana-
lyzed using the poweRlaw package distributed with R according to the methodology described in54. Full details 
for the topological analysis of data are given in SI.1. Furthermore, to quantify the specific distributions of B/D 
ratios introduced in this paper we made use of the Gini coefficient–borrowed from the area of economics where 
it is used to evaluate data dispersion27.

In SI.2 we present the preferential attachment analysis based on combinations of two and three node centrali-
ties. Given a graph G = (V, E), with nodes vi ∈ V and links eij ∈ E, we define the basic graph centralities and metrics 
used throughout the paper. We represent the adjacency matrix as W = {wij}, which contains either the weight of 
the link for any link eij, or 0, if no link exists. If the network is unweighted, then each wij = 1.

The degree ki of a node vi (also denoted as D) is defined as k wi ij= ∑ . In case of directed networks, there is a 
differentiation between in-degree and out-degree, but that is beyond the scope of this subsection. The average 
degree AD of the graph is calculated over all nodes as1:

Figure 8.  An intuitive explanation of the social evolution cycle. All nodes are colored and sized proportional 
to their betweenness centrality (influence). (a) A non-influential individual (grey) initiates social contact 
(link) with other individuals equal or more influential than himself. (b) This action leads to a natural increase 
of the individual’s influence (betweenness). (c) Other nodes with less influence start connecting to the initial 
individual. At this point, the initial node has become a predominant receiver of new ties, as emphasized by the 
new violet links.
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The clustering coefficient CCi measures the fraction of existing links in the vicinity Vi of a node, and is formally 
defined as55:
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with ki being the degree of node vi, and ejk the set of links connecting two friends in the vicinity of node vi, all 
divided by the maximum number of links in vicinity Vi. Consequently, the average clustering coefficient ACC of 
the entire graph is the average of all CCi over all nodes.

Considering d(vi, vj) as the shortest path between two nodes in G, the average path length APL is defined as1:
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If there is no path between two nodes, then that particular distance is considered 0; n is the total number of 
nodes |V| in G.

The diameter of a graph is defined as the longest geodesic56, namely the longest shortest distance between any 
two nodes: Dmt = max(d(vi, vj)).

Graph density is simply defined as the ratio between number of links and maximum possible number of links, 
if the graph were complete56. For undirected graphs, it is defined as:
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Modularity is a measure for quantifying the strength of division of a graph into modules, or clusters, and is 
often used in detection of community structure57. Modularity Mod is the fraction of the links which lie within 
a given group minus the expected fraction if links were distributed at random. Values for Mod range between 

Dataset Acronym N E AD APL ACC Mod Dmt Dns

Facebook FB 590 5847 19.82 2.481 0.266 0.468 8.5 0.05

Google Plus GP 638 3875 12.15 3.9 0.404 0.44 12 0.035

Co-authorships CoAu 1589 2742 3.451 5.823 0.878 0.954 17 0.002

Online social network OSN 1899 20296 10.68 3.055 0.138 0.249 8 0.008

Bitcoin OTC BTC 5881 21492 7.309 3.571 0.288 0.489 9 0.001

Wikipedia votes WkV 7115 101 K 28.32 3.248 0.209 0.421 7 0.004

Geometry collaboration Geom 7343 11898 3.241 5.313 0.728 0.783 14 0

CondMat collaboration CM 23 K 93 K 8.083 5.352 0.706 0.729 15 0

MathOverflow MOvr 25 K 188 K 15.15 3.231 0.412 0.351 9 0.001

HEP citations HEP 28 K 353 K 25.40 4.278 0.119 0.65 15 0.001

POK social network POK 29 K 115 K 18.75 5.2 0.109 0.3 11 0

Email Enron EmE 37 K 184 K 10.02 4.025 0.716 0.618 13 0

IMDB co-appearances IMDB 48 K 1.1 M 23.02 3.772 0.197 0.63 13 0.001

Brighkite social network BK 58 K 214 K 7.353 7.371 0.271 0.674 18 0

Facebook New-Orleans FBNO 64 K 1.5 M 24.25 4.349 0.148 0.61 15 0.001

Epinions social network EP 76 K 508 K 13.41 4.307 0.066 0.445 14 0

Slashdot social network SL 82 K 948 K 23.08 4.069 0.024 0.343 11 0

Timik platform TK 364 K 6.1 M 33.28 4.086 0.117 0.52 14 0

Table 5.  Network sizes (numbers of nodes N and edges E) and mean values of average degree (AD), average 
path length (APL), average clustering coefficient (ACC), modularity (Mod), diameter (Dmt), and density (Dns) 
for the chosen real-world datasets.

Dataset AD APL ACC Mod Dmt Dns

Range 8.57–37.18 1.92–3.04 0.215–0.299 0.313–0.656 6–11 0.02–0.114

Average 20.02 2.48 0.265 0.472 8.41 0.0512

σ 7.898 0.239 0.023 0.096 1.19 0.022

Table 6.  Natural ranges for considered graph metrics: average degree (AD), average path length (APL), average 
clustering coefficient (ACC), modularity (Mod), diameter (Dmt), and density (Dns).
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[−1/2, 1). If it is positive, then the number of links within a cluster exceeds the expected number. Also, a high 
overall modularity means dense connections between the nodes within modules and sparse connections between 
nodes in different modules. We use the algorithm of Blondel et al. to compute modularity58.

Betweenness centrality is commonly defined as the fraction of shortest paths between all node pairs that pass 
through a node of interest1, and is defined as59:

∑
σ
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where σjk(vi) is the number of shortest paths in G which pass through node vi, and σjk is the total number of short-
est paths between all pairs of two nodes vj and vk from G.

Closeness centrality is defined as the inverse of the sum of geodesic distances to all other nodes in G1,56, and can 
be considered as a measure of how long it will take to spread information from a given node to other reachable 
nodes in the network:
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where d(vi, vj) is the distance (number of hops) between the two nodes vi and vj.
The most common centrality based on the random walk process is the Eigenvector centrality (EC), which 

assumes that the influence of a node is not only determined by the number of its neighbors, but also by the 
influence of each neighbor23. The centrality of any node is proportional to the sum of neighboring centralities1. 
Considering a constant λ, the EC is formally defined as:
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Assessing network fidelity.  In order to assess the structural realism of the generated social networks, 
we used the statistical fidelity ϕ, which is proven to offer reliable insights on complex network topologies25. The 
fidelity metric ϕ numerically captures the similarity between any graph topology G* with respect to another ref-
erence graph G (i.e., a complex network G = (V, E)). More precisely, by measuring and comparing their common 
individual graph metrics, a maximum fidelity of 1 represents complete similarity, while a minimum fidelity of 0 
represents complete dissimilarity between the two compared topologies. Of note, the fidelity is not dependent 
on the choice of metrics of interest, however it is customizable to allow a weighted comparison. Depending on 
the context of the problem, any numerical value (i.e. metric) that is representative for the model can be used. The 
definition and proof of statistical fidelity ϕ are detailed in25.

Definition 1. Given a reference topology G, and any other network G* being compared to G, the arithmetic 
fidelity Aϕ∗, which expresses the similarity between G* and G, is defined as:
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In equation 8, i is the index of the metric which describes the two networks being compared, and n is the total 
number of metrics used in the comparison. In this paper we compute the fidelity between multiple synthetic 
topologies and the empirical social network references. These reference datasets are chosen because they have 
typical real-life social network features. The fidelity comparison is made relative to the set of relevant network 
metrics (indexed by i).

In this paper, fidelity is measured by taking into consideration the following topological characteristics: aver-
age degree AD, average path length APL, average clustering coefficient ACC, modularity Mod, diameter Dmt, and 
density Dns.
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